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Abstract

This article proposes to add a single function calls to an iterative algebraic
equation solver with an order n convergence rate, and to raise (for n > 1) the
order of convergence to 2n − 1.

INTRODUCTION

Newton’s method for finding the root for f(x) = 0 is very widely used, both directly
and as a conceptual basis for the development of further methods. There is a large
literature on schemes to generalize the method to various higher orders. In particu-
lar, Kung and Traub[1] demonstrated that an equation solver with n functional calls
can achieve an order of convergence 2n−1. However it is believed that no equation
solver that achieves this order has been constructed for n > 4.

Many of the existing fast equation solvers are skillfully constructed (for recent
examples, see [4],[5],[6]) but we consider the simplicity of implementation. In this paper
a simple idea is proposed which is to add a single extra function evaluation to an
arbitrary one-point iterative equation solver of convergence order n, and thereby to
accelerate the original scheme to an order of convergence 2n−1. Furthermore, it can
be shown that with each additional call of the derivatives, the order of convergence
is raised by n − 1 more (see appendix).

THE ORDER OF CONVERGENCE

An iterative equation solver for a set of algebraic equations ~F (~x) = 0 is said to have
an order of convergence n when

|~xk+1 − ~xk| = O(|~xk − ~xk−1|
n)
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at the kth iteration. An almost equivalent definition is that

|~F (~xk+1)| = O(|~xk+1 − ~xk|
n)

in the case when the Jacobian of the system is non-zero at the solution. The order
of convergence of an iterative solver is a measurement of how fast it converges to
the true solution.

The proposed new scheme accelerates an iterative solver with nth-order conver-
gence, with a single additional functional call, the order of convergence can be raised
from n to 2n − 1.

There are two steps with this method and we demonstrate the procedure here for
the case n = 3 with the well-known Halley’s method[2]. Let xk be the kth estimate
for the root. One solves the equation (assuming f ′′ 6= 0)

f(xk) + f ′(xk)δ +
1

2
f ′′(xk)δ

2 = 0, (1)

and the two roots are explicitly expressed as

δ = −
1

f ′′(xk)

(

f ′(xk) ±
√

f ′(xk)2 − 2f(xk)f ′′(xk)
)

.

To recover Newton’s method when the quadratic term vanishes, we pick only one
root and it can be written as

δ =
sgn(f ′(xk))

f ′′(xk)

(

√

(f ′(xk))2 − 2f(xk)f ′′(xk) − |f ′(xk)|
)

.

The above step uses three function calls. Note that a Taylor series for f(x + δ) at
x = xk using Eq. (1) implies

f(xk + δ) = O(δ3). (2)

The next step uses one more function call to gain two more orders of convergence.
One adds a term f(xk + δ) to Eq. (1), and solves

f(xk + δ) + f(xk) + f ′(xk)∆ +
1

2
f ′′(xk)∆

2 = 0. (3)

The solution is similar to that obtained in the first step:

∆ =
sgn(f ′(xk))

f ′′(xk)

(

√

(f ′(xk))2 − 2(f(xk + δ) + f(xk))f ′′(xk) − |f ′(xk)|
)

.
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Finally, let xk+1 = xk + ∆ for completion of the current iteration cycle.

One computes only four function values f(xk), f
′(xk), f

′′(xk), and f(xk + δ).
However, the above scheme is fifth order convergent as shown next.

From a Taylor expansion one obtains

f(xk + ∆) = f(xk) + f ′(xk)∆ +
1

2
f ′′(xk)∆

2 +
1

6
f ′′′(xk)∆

3 + O(∆4).

The sum of the first three terms in the right-hand side is equal to −f(xk + δ) from
Eq. (3); thus f(xk +∆) = −f(xk +δ)+f ′′′(xk)∆

3/6+O(∆4). However, from Eq. (1)
and the Taylor expansion of f(xk + δ), the above estimate becomes

f(xk + ∆) =
1

6
f ′′′(xk)(∆

3 − δ3) + O(∆4 − δ4) = (∆ − δ)O(∆2, δ2). (4)

By subtracting Eq. (1) from Eq. (3) one arrives at

(∆ − δ)(f ′(xk) + O(δ)) = −f(xk + δ) = O(δ3). (5)

It tells us that ∆ and δ are of the same order and

(∆ − δ) = O(δ3).

One easily sees from Eq. (4) and Eq. (5) that

f(xk+1) = f(xk + ∆) = O(∆5).

Therefore the method is fifth-order order convergent; however it employs only
four function values. The proof above can be generalized for arbitrary n.

If f ′(x) = 0 at the solution, Newton’s method either fails or converges slowly.
The rapidly-converging scheme described above is more stable. However, the order
of convergence is reduced from five to four because when f ′ = 0, Eq. (5) gives
(δ − ∆) = O(δ2) instead of O(δ3). In practice if xk is not close to the solution, the
term under the square root f ′(xk))

2 − 2f(xk)f
′′(xk) can become negative and break

the iteration. In this case this term can be set to zero to keep the computation
going.

If f ′ is finite at the solution, because f → 0 when xk is close to the solution,
x∗, the term in the square root will be non-negative when sufficiently close to con-
vergence; if f ′ = 0 at the solution, setting this term to zero (if it becomes negative)
would give δ = −f ′(xk)/f

′′(xk), which is similar to a Newton-method by L’Hospital’s
rule.
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TO RAISE THE ORDER OF CONVERGENCE

FROM n TO 2n − 1

An one-point iterative equation solver for f(x) = 0 can be generally written as a
fixed-point iteration as

xk+1 = xk + δ(f(xk), f
′(xk), f

′′(xk)...) = xk + δk. (6)

If the solver is of convergence order n, we also have

f(xk + δk) = O(δn
k ). (7)

We are now going to show that the modified scheme

x̄k+1 = xk + δ(f(xk) + f(yk), f
′(xk), f

′′(xk)...) (8)

has an order of convergence 2n − 1 with yk = xk + δk.

With a Taylor expansion of the above equation, one has

x̄k+1 = xk + δ(f(xk), f
′(xk), f

′′(xk)...) +
∂δ

∂f
× f(yk) + O(f(yk)

2).

Because f(yk) = O(δn
k ), then to the order 2n, one has

f(x̄k+1) = f(xk + δk +
∂δ

∂f
× f(yk)) + O(δ2n

k ). (9)

Next we evaluate the partial derivative (evaluated at yk) in the above equation.
Because the original solver is nth-order convergent has the truncated Taylor series

f(x) + f ′(x)δ(x) +
f(x)′′

2
(δ(x))2 + ... +

f (n−1)

(n − 1)!
(δ(x))n−1 = O((δ(x))n)). (10)

Differentiate the above equation with respect to f , one finds that

1 + f ′(x)
∂δ

∂f
+ f ′′(x)δ

∂δ

∂f
+ ... +

f (n−1)

(n − 2)!
(δ(x))n−2δf = O((δ(x))n−1))

∂δ

∂f
.

Collecting the coefficients of ∂δ/∂f , one realizes it is a truncated Taylor expansion
of f ′(x + δ(x)) to the order (δ(x))n−1), so we can write
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∂δ

∂f
= −

1

f ′(x + δ(x))
+ O((δ(x)n−1). (11)

Then one is able to estimate the size of f(x̄k+1) with Eq. (9) which is accurate
to order 2n.

f(x̄k+1) = f(yk +
∂δ

∂f
× f(yk)) + O(δ2n

k ) = f(yk) + f ′(yk)
∂δ

∂f
× f(yk) + O(δ2n

k ).

Because f(yk) = O(δn
k ) and ∂δ/∂f is off from −1/f ′(yk) by only O(δn−1

k ) with
Eq. (11), the f(yk) term on the right-hand-side is canceled. One finally arrives at

f(x̄k+1) = O(δ2n−1
k ). (12)

Thus by adding a single function call f(yk), an arbitrary iterative equation solver
Eq. (6) that is nth-order convergent becomes (2n−1)th-order convergent with Eq. (8).

NUMERICAL EXAMPLES

WITH A SINGLE NONLINEAR ALGEBRAIC EQUATION

An iterative equation solver of nth-order convergence which solves the truncated
Taylor expansion

n−1
∑

i=0

f (i)(xk)

i!
(δk)

i = 0, (13)

with δk = xk+1 − xk, can be improved as before by re-solving the original equation
but with an additional term:

f(xk + δk) +
n−1
∑

i=0

f (i)(xk)

i!
(∆k)

i = 0 (14)

and taking xk+1 = xk + ∆k. This is worth doing when the evaluation of function
values cost much more than solving polynomial equations (with an iterative solver,
say).

Next we demonstrate the convergence rate of the new scheme for a high-order
Taylor-expansion scheme

f(xk) + f ′(xk)δ +
f ′′(xk)

2
δ2 +

f ′′′(xk)

6
δ3 +

f ′′′′(xk)

24
δ4 = 0 (15)
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(which is fifth-order convergent) with an example f(x) = cos(x)−x which has a root
at x∗ = 0.739085133215160641638918505..... Because a trigonometric function costs
a lot to evaluate, it is desirable to use fewer function values for a specified accuracy.
All numerical evaluations below are done with mathematica with an accuracy of 100
digits.

We take an initial guess that matches the root to four digits, x0 = 0.7388; and
the above quartic polynomial equation has the solution

δ = 0.0002851332151606416616318333984161...,

which gives f(x0 + δ) = −1.05768 × 10−20. This accuracy is expected because the
order of convergence here is 5 = 20/4, the ratio between digits of accuracy of two
consecutive iterations, with this fifth-order Newton’s scheme. Now we add the term
f(x0 + δ) to Eq. (15) and solve

f(x0 + δ) + f(x0) + f ′(x0)∆ +
f ′′(x0)

2
∆2 +

f ′′′(x0)

6
∆3 +

f ′′′′(x0)

24
∆4 = 0

and expect the result, with (2n−1)th-order convergence in theory, to have 9×4 = 36
digits of accuracy (n = 5 is the convergence order of Eq. (15), and 4 is the number
of effective digits of x0). Indeed, we find

∆ = 0.0002851332151606416553120876738734033130443414832...

and the modified solution x1 = x0 + ∆ gives f(x1) = 1.17214333× 10−36. Therefore
the order of convergence with the proposed scheme is numerically 36/4 = 9, equal
to (2n − 1) just as proven in the previous section (with n = 5 here).

WITH A SYSTEM OF NONLINEAR EQUATIONS

For a system of equations, the most commonly used root-finding method is Newton’s
method; i.e., to obtain the solution of ~F (~x) = 0, with ~F = (F1, F2, .....FM ) and
~x = (x1, x2, .....xM) (M a positive integer) one solves

F (~xk) + ~∇F (~xk) · ~δk = 0 (16)

and takes ~xk + ~δk as the new estimate of the root. This scheme is second-order
convergent. To accelerate the scheme, we add the term ~F (~xk + ~δk) and solve

~F (~xk + ~δk) + ~F (xk) + ~∇F (xk) · ~∆k = 0 (17)
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Figure 1: The convergence map (residue logarithm vs. number of iterations) of
Newton’s method (diamonds, following a parabola) and the proposed method (circles,
following a cubic curve) for the equation system Eq. (18).
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for ∆k, and finally let ~xk+1 = ~xk + ~∆k. The improved scheme is third-order conver-
gent.

This convergence rate is obtained with no evaluation of second derivatives, but
with M function evaluations in addition to the cost of the original Newton’s method.
Considering that the Newton’s method requires M function values and M2 deriva-
tives, as M becomes large the improved scheme is considerably more efficient. The
additional cost is relatively insignificant, but provides an extra order of convergence.
Not only this, there is also no need to recompute the inverse of Jacobian-matrix in
Eq. (17).

Finally we apply the new scheme to a system of algebraic equations

f(x, y) = cos(πx)ey + sin(
x2 + y2

2
), g(x, y) = sin(πy)ex + cos(

x2 + y2

2
). (18)

This system has a solution at (x, y) = (1, 0). With the initial guess (x, y) = (0.7, 0.3),
the solution can be obtained by taking either a Newton iteration scheme

f(xk, yk) + fxδx + fyδy = 0, g(xk, yk) + gxδx + gyδy = 0,

to solve for xk+1 = xk + δx, yk+1 = yk + δy; or with the scheme in this paper that

f(xk + δx, yk + δy) + f(xk, yk) + fx∆x + fy∆y = 0,

g(xk + δx, yk + δy) + g(xk, yk)) + gx∆x + gy∆y = 0,

to solve for ∆x, ∆y, and letting

xk+1 = xk + ∆x, yk+1 = yk + ∆y,

at the (k + 1)th iteration.

The residues from both methods are plotted in Fig. 1. The proposed scheme,
being third-order in this case, clearly converges much faster than the Newton method
of second-order convergence.

CONCLUSION

For an iterative equation-solver that is nth-order convergent, the order of conver-
gence can be raised to 2n−1 by adding a single non-derivative term to the expansion.
The proof of this conclusion for an arbitrary iterative solver is given in this paper.
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Many high-order iterative solvers [4],[5],[6] are special cases of the proposed scheme.
When the proposed scheme is applied to Newton’s method for a system of M equa-
tions, third-order convergence can be obtained with only M function evaluations,
in addition to the M + M2 function evaluations for the second order convergence
obtained with the usual Newton’s method. This indicates that a substantial speed-
up on average over Newton’s method can be achieved for M ≫ 1 if the solution
involves inverting the Jacobian.

APPENDIX: TO RAISE THE ORDER FROM n

TO (k + 1)n − k

An iterative equation solver for f(x) = 0 can be generally written as a fixed-point
iteration as

xk+1 = xk + δ(f(xk), f
′(xk), f

′′(xk)...) = xk + δk. (19)

If a consecutive iteration is taken, one would obtain a better estimate of the
root x̄k+1 with

x̄k+1 = xk + δk + ǫk, (20)

where
ǫk = δ(xk + δ(xk)).

If the solver is nth order convergent we have f(xk + δk) = O(δn
k ), thus

ǫk = O(δn
k ), (21)

this is easily seen with a Taylor expansion of f(xk + δk + ǫk) to a couple of terms.
The refined estimate x̄ would give a convergence order of n2 such that

f(xk + δk + ǫk) = O(ǫn
k) = O(δn2

k ) (22)

Let’s now consider the functions g(x) and h(x)

g(x) = x + δ(x) = x + δ(f(x), f ′(x), f ′′(x)..., f (n−1)), h(x) = δ(g(x)), (23)

then analyze the behavior of

y(x) = g(x) + h(x). (24)
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From Eq. (22) one has

f(y(x)) = O(δ(x)n2

) = O(h(x)n). (25)

If we perturb h(x) a little bit, from

h(x) = δ(f(g(x)), f ′(g(x)), f ′′(g(x)), ...)

to
h̄(x) = δ(f(g(x)), f ′(g(x)) + d(f ′(g)), f ′′(g(x)) + d(f ′′(g)), ...), (26)

then ask how much h(x) has changed, a Taylor expansion of δ at g(x) gives that

h̄(x) = h(x) +
∂h

∂f ′
d(f ′(g)) +

∂h

∂f ′′
d(f ′′(g)) + ...

We would like to evaluate the partial derivatives in the above expansion with
Eq. (22). Taking the Taylor’s expansion of Eq. (22) at an arbitrary g(x) and using
the definition of g, f , one sees that

f(g(x) + h(x)) = f + f̄ ′h +
f̄ ′′

2
h2 + ... +

f̄ (n−1)

(n − 1)!
hn−1 = O(hn)), (27)

where f̄ ′ = df/dg, f̄ ′′ = d2f/dg2, ..... Taking partial derivative to f̄ ′, f̄ ′′, ...., with
some algebraic manipulations one obtains

∂h

∂f̄ ′
= −

h

f ′(y(x))
+ O(hn),

∂h

∂f̄ ′′
= −

h2

f ′(y(x))
+ O(hn+1), .... (28)

In general one has
∂h

∂f̄m
=

hm

m!f ′(y(x))
+ O(hn+m−1). (29)

With Eq. (27), the above partial derivatives are obtained to the leading order.
The expression of h̄(x) can then be written as

h̄(x) = h(x) − (
h

f ′(y)
+ O(hn)) × d(f ′(g)) − (

h2

2f ′(y)
+ O(hn+1)) × d(f ′′(g))+

... − (
hn−1

(n − 1)!
f ′(y) + O(h2(n−1)) × d(f (n−1)(g)) + .... (30)
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We now consider how to approximate the derivatives of f about g in the expres-
sion of h(x). Since we have all the derivatives of f about x obtained until the order
n−1 already available, with these known derivatives we are able to do the following
approximations:

f ′(g) = f ′(x + δ(x)) =
n−2
∑

i=0

f (i+1)

i!
δ(x)i + O(δ(x)n−1),

f ′′(g) = f ′′(x + δ(x)) =
n−3
∑

i=0

f (i+2)

i!
δ(x)i + O(δ(x)n−2),

until
f (n−1)(g) = f (n−1)(x + δ(x)) = f (n−1)(x) + O(δ(x)).

With the above approximations we have d(f ′(g)) = O(δn−1), d(f ′′(g)) = O(δn−2),...
and so on. Substituting these in Eq. (30) one finds that

h̄(x) − h(x) = −
1

f ′(y)

(

hO(δn−1) +
h2

2
O(δn−2) + ....

)

+ h.o.t.,

where h.o.t. stands for higher-order-terms.

Because h(x) = O(δ(x)n), the above estimate of the difference between h(x) and
h̄(x) can also be written in terms of δ only, such that

h̄(x) − h(x) = −
1

f ′

(

O(δ2n−1) + O(δ3n−2) + ....
)

+ h.o.t.. (31)

This means, with our choices of approximations to the derivatives in h(x), the
modified estimate of the root

yk+1 = g(xk) + h̄(xk), (32)

would give
f(yk+1) = O(δ2n−1

k ). (33)

The modified iterative scheme Eq. (32), with only one more function value
f(xk + δk) evaluated for h̄(x), would raise the order of an arbitrarily given nth-order
convergent iterative equation solver to (2n − 1)th order.

However if we also evaluate f ′(x + δ(x)) exactly, then d(f ′(g)) = 0, the first
correction in Eq. (31), vanishes. Then with two more function calls f(xk + δk) and
f ′(xk + δk), the order of convergence of Eq. (6) would be raised to 3n−2, and so on.
The order raised by adding the first k derivative evaluations at x + δ(x) is k(n− 1)
in general.
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